Probing nanoscale oxygen ion motion in memristive systems

نویسندگان

  • Yuchao Yang
  • Xiaoxian Zhang
  • Liang Qin
  • Qibin Zeng
  • Xiaohui Qiu
  • Ru Huang
چکیده

Ion transport is an essential process for various applications including energy storage, sensing, display, memory and so on, however direct visualization of oxygen ion motion has been a challenging task, which lies in the fact that the normally used electron microscopy imaging mainly focuses on the mass attribute of ions. The lack of appropriate understandings and analytic approaches on oxygen ion motion has caused significant difficulties in disclosing the mechanism of oxides-based memristors. Here we show evidence of oxygen ion migration and accumulation in HfO2 by in situ measurements of electrostatic force gradient between the probe and the sample, as systematically verified by the charge duration, oxygen gas eruption and controlled studies utilizing different electrolytes, field directions and environments. At higher voltages, oxygen-deficient nano-filaments are formed, as directly identified employing a CS-corrected transmission electron microscope. This study could provide a generalized approach for probing ion motions at the nanoscale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZnO-porous silicon nanocomposite for possible memristive device fabrication

Preliminary results on the fabrication of a memristive device made of zinc oxide (ZnO) over a mesoporous silicon substrate have been reported. Porous silicon (PS) substrate is employed as a template to increase the formation of oxygen vacancies in the ZnO layer and promote suitable grain size conditions for memristance. Morphological and optical properties are investigated using scanning electr...

متن کامل

Effect of voltage polarity and amplitude on electroforming of TiO2 based memristive devices.

Pt/TiO2/Pt/Ti memristive devices were electrically formed to either the ON or OFF state using voltages of the same polarity but with different amplitudes. The forming step dictated the subsequent switching behaviour. A qualitative model based on the creation and migration of oxygen vacancies was proposed to explain the experimental results.

متن کامل

Anatomy of vertical heteroepitaxial interfaces reveals the memristive mechanism in Nb2O5-NaNbO3 thin films

Dynamic oxygen vacancies play a significant role in memristive switching materials and memristors can be realized via well controlled doping. Based on this idea we deposite Nb₂O₅-NaNbO₃ nanocomposite thin films on SrRuO₃-buffered LaAlO₃ substrates. Through the spontaneous phase separation and self-assembly growth, two phases form clear vertical heteroepitaxial nanostructures. The interfaces bet...

متن کامل

Chaotic memristor

We suggest and experimentally demonstrate a chaotic memory resistor (memristor). The core of our approach is to use a resistive system whose equations of motion for its internal state variables are similar to those describing a particle in a multi-well potential. Using a memristor emulator, the chaotic memristor is realized and its chaotic properties are measured. A Poincaré plot showing chaos ...

متن کامل

Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems.

A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017